仪器设备网(17net.com)欢迎您!

| 登录 注册
网站首页-资讯-专题- 微头条-话题-产品库- 品牌库-搜索-供应商- 展会-招标-采购- 社区-知识-技术-资料库-直播- 视频-课程

产品中心

当前位置:仪器设备网>产品中心> 北京欧兰科技发展有限公司>多光子成像>MCL单分子成像Nano-Cyte®

收藏

MCL单分子成像Nano-Cyte®
品牌MCL Think Nano
型号Nano-Cyte®
同类产品多光子成像(14件)
供应商报价

面议

所在地美洲 美国
北京欧兰科技发展有限公司

第1年

企业类型:国有
所在地:北京 海淀区

售全国

经营业务:
更新时间:2024-06-22 09:42:20
进入展台

最新产品

MCL单分子成像Nano-Cyte®技术参数
品牌 MCL Think Nano 型号 Nano-Cyte®
MCL单分子成像Nano-Cyte®详细介绍





Nano-Cyte Logo

3D stability for imaging

US Patent Number 9,019,363

  What is Nano-Cyte®?


Features3D stabilization up to 3 nanometersActive positional control over daysCorrects for temperature gradients and driftSimultaneous image acquisition and stabilizationParticle localization analysisParticle position renderingThe Nano-Cyte® single molecule imaging system eliminates the microscope drift that limits advanced fluorescence imaging methods. With Nano-Cyte® you no longer need to be concerned with temperature gradients, sample drift, and microscope drift. Unprecedented stability in the nanometer regime allows long term experiments as never before. 

The Nano-Cyte® works by using the image of fluorescent fiduciary references, sparsely distributed within the sample, to localize these emitters in all three dimensions. The Nano-Cyte® uses this 3D localization information to provide active position adjustments to the sample, thus eliminating drift in the experiment.

Nano-Cyte® is the complete stabilization and image acquisition instrument for advanced fluorescence microscopy. Our integrated approach to 3D stabilization yields image stability up to 3nm in X,Y and Z axes. Nano-Cyte® has proven stability over days and is a unique offering that promises to revolutionize advanced microscopy methods.


  Hardware



The Nano-Cyte® is comprised of a high performance three axis nanopositioning system coupled with a two axis motorized micropositioning stage. These precision motion capabilities enable the active positional control and particle tracking features of the Nano-Cyte®. The nanopositioner is a flexure guided piezoactuated design with integrated PicoQ® sensorsfor absolute position sensing and nanometer precision under closed loop control. The micropositioning stage enables the user to have a large range of travel for surveying samples prior to engaging the active stabilization. All motion devices are controlled by the Nano-Cyte® controller via USB 2.0 interface.

The Nano-Cyte® hardware is compatible with Mad City Labs RM21™ open microscopy platform and most models of inverted optical microscopes.


  Method


Video: Nano-Cyte®: 3D Image Stabilization SystemThe Nano-Cyte® feedback control system. Stabilization is based on the imaging pathway.

  Software


The native Nano-Cyte® software performs 6 important functions:

  • Stabilization

  • Image acquisition

  • Device control

  • Particle localization analysis

  • Rendering of particle position

  • Tracking over multiple fields-of-view (FOV)


The Nano-Cyte® 3D stabilization occurs simultaneously with image acquistiion and incorporates reference selection, reference localization, and calibration statistics. Acquired images are saved in TIFF format and can be exported to ImageJ and other 3rd party software for post-acquisition processing.

Nano-Cyte® device control ensures precision motion control and the ability to incorporate a variety of external user devices such as EMCCD cameras, shutters and light sources. Compatibility with LabVIEW™ and μManager facilitates even greater user device control and flexibility.

Post-acquisition features of Nano-Cyte® enable the localization of particles within an image and the three dimensional rendering of particle positions.

Nano-Cyte® is compatible with LabVIEW™, μManager, ImageJVI and rapidSTORM. In addition, Nano-Cyte® has an exportable DLL to allow wider functionality with 3rd party software platforms.



  Stability Data


Nanometer Stability over Days


Stability data measured over 44 hours for the Z-axis. The red line indicates the measured drift. The blue line indicates the stabilized position when using Nano-Cyte®. Similar results were observed simultaneously for the X and Y-axis. These data below demonstrate the efficacy of the Nano-Cyte®under non-monotonic drift conditions.

 -->

Effective Stability Using Nano-Cyte®


The Nano-Cyte® data below shows position changes performed on the z-axis over a period 1 hour. Similar results were observed simultaneously for the X and Y-axis. These data demonstrate that the Nano-Cyte® effective stability is 3nm.


  Nano-Cyte® Specifications


Stability (X, Y, Z-Axis)3 nmDrift rate compensation (typical)10 nm/secStabilization rate (typical)1 frame/secMaximum data acquisition rateCamera dependentNanopositioning range of motion200 μm × 200 μm × 200 μm      Position noise (total)0.4 nm      Step size3 nmMicropositioning range of motion25 mm x 25 mm      Encoder resolution20 nm      Minimum step size95 nmControllerNano-Cyte®CommunicationUSB 2.0TTL outputs4 channelsOutput image formatTIFFSoftwareNano-Cyte®Software compatibilityLabVIEWμManagerImageJ & ImageJVIExportable DLLRapidSTORMMicroscope compatibilityNikon Ti, TE SeriesZeiss Axio SeriesOlympus IX SeriesRM21™Supported EMCCD Camera typesAndorPhotometricsHamamatsuPower supply90-260 VAC (50/60Hz)Operating systemWindows Vista/7/8





Additional Information

Nano-Cyte® Brochure
Nano-Cyte brochure

Nano-Cyte® Video
Technical notes about sample preparation and applications are available by request.



Related Products

  • Nano-Cyte® Video 

  • RM21™ Microscope Platform

  • C-Focus™

  • Nano-LPS Series

  • MicroStage Series

  • Nanopositioning Accessories



在线留言

换一张?
取消